

Picture credits: Thermal Waste Treatment Plant in Greatmoor, Buckinghamshire, United Kingdom, with kind permission of Hitachi Zosen Inova; picture top right: © PantherMedia/Philip Lange; picture bottom right: © sourabhj / Fotolia.com.

Waste to Energy 2019/2020

Technologies, plants, projects, players and backgrounds of the global thermal waste treatment business

Waste to Energy 2019/2020

The leading standard reference in the WtE industry. On around 1,100 pages the 12th edition includes up-to-date information and analysis:

- more than <u>2,430 waste treatment plants</u> with more than <u>4,800 incineration units worldwide</u>, including details on capacity, start of operation, technology, flue gas treatment, manufacturer and operator
- more than 1,100 WtE projects throughout the world
- treatment technologies and market shares of important operators and technology providers
- market factors, planning requirements and operating modes of thermal waste treatment
- investment and operational costs and revenues with exemplary calculations
- a <u>forecast of the global WtE market until 2028</u>, <u>by country</u>, including new plants and capacities, shutdowns and investment volumes per year, explained in a comprehensible and detailed way

In addition to the study, all customers will receive the following products for one year:

- **ecoprog WtE Monitor**: update on international construction and modernisation projects (emailed every two weeks)
- **ecoprog WtE Project Tracker**: complete list of all known projects worldwide (MS Excel file), including status, capacity and commissioning (emailed every three months)
- **ecoprog WtE Archive**: online access to the world's largest expert archive on the WtE market with currently more than 12,000 news since 2009

The study is available in English language, starting from 2,900.- EUR plus VAT. **Please see the end of this extract for detailed price and contact information.**

Background

The market for thermal treatment and energetic recovery of residual and other types of solid waste is growing continuously. Increasing waste amounts, shrinking landfill spaces in agglomerations and higher ecological standards stimulate this growth throughout the world.

Today, around 2,450 thermal waste treatment plants are active worldwide. They have a disposal capacity of around 368 million tons of waste per year. Only in 2018, more than 60 new plants had been installed with a total treatment capacity of more than 14 million tpy. We estimate nearly 2,700 plants with a capacity of more than 530 million tpy to be operational by 2028.

Content

Prefa	ace			15
Man	agement summary		Albania Austria Belgium Croatia Czech Republic Denmark Estonia Finland France Germany Greece Hungary Ireland Italy Latvia Lithuania	17
Part	I: Market and competition			22
1	This year's highlights and tren	nds		23
2	Plants worldwide			27
	2.1 Europe2.2 Asia2.3 North America2.4 Rest of the world			32 34 36 37
3	Market development & forecas	39		
	3.1 Global market3.2 Europe3.3 Asia3.4 North America3.5 Rest of the world			39 42 45 47 48
4	Operators: competition and m	arket shares		51
5	Technology providers: compe	tition and marke	et shares	54
6	National markets			65
6.1	Africa & Middle East South Africa United Arab Emirates Rest of Africa & Middle East	62 63 67 72	Austria Belgium Croatia	624 629 639 654 657
6.2	Asia China India Indonesia Iran Japan Malaysia Pakistan Philippines Singapore South Korea	81 82 257 283 291 298 507 514 518 527	Denmark Estonia Finland France Germany Greece Hungary Ireland Italy Latvia Lithuania	665 681 685 694 737 775 780 785 791 813 816
6.3	Taiwan Thailand Vietnam Rest of Asia Australia & Pacific Australia	573 587 600 608 <i>613</i> 614	Luxembourg Malta Netherlands Norway Poland Portugal Romania	820 822 825 836 846 860 867
6.4	Rest of Australia & Pacific	622 623	Russia Serbia	870 879
6.4	Europe	023	Slovakia	882

Extract, Content

	Slovenia Spain	886 890		USA Rest of North America & Caribbean	992 1024
	Sweden Switzerland Turkey Ukraine United Kingdom Rest of Europe	899 914 929 934 940 977	6.6	South & Central America Argentina Brazil Chile Colombia Mexico	1027 1028 1032 1037 1041 1045
6.5	North America Canada	<i>980</i> 981		Rest of South & Central America	1049
Part	II: Background				1052
7	Scope				1053
	7.1 Technology7.2 Type of fuel or waste7.3 Co- and mono-incinerators7.4 Geographical differentiation				1053 1053 1056 1056
8	Technology				1059
	8.1 Delivery and sorting / pretreatment of fuel8.2 Thermal treatment: incineration & gasification8.3 Generation of energy8.4 Flue gas cleaning				1059 1062 1069 1069
9	Costs and revenues				1071
	9.1 Investment sum9.2 Operating costs9.3 Revenues				1072 1074 1075
10	0 Framework /market factors				1079
	10.1 Shortage of land 10.2 Environmental reasons for limiting the use of landfill sites 10.3 Energetic use 10.4 Environmental criticism of WtE 10.5 Recycling or WtE? 10.6 Pretreatment plants: competition and clients				1079 1080 1083 1084 1086 1087
Methodology/data					1091
Glossary, abbreviations					1095
Appendix 1: Known projects worldwide					1097
Appendix 2: Prognosis data					
Appendix 3: Plant register					

Switzerland

Last update: 09-2019

Inhabitants [million]	8.54	Number of waste incineration plants	30
Municipal solid waste [1,000 t]	6,060	Incineration capacity [1,000 Mg/a]	4,016
of which thermally treated [1,000 t]	2,880	Average age of incineration lines	22
Electricity from waste 2016 [GWh]	2,422	Share of total electricity production 2015 [%]	3.6
Heat from waste 2016 [TJ]	13,654	Share of total heat production 2015 [%]	62.2

Management summary

The market for the construction of new waste incineration plants in Switzerland is saturated. Individual lines can be expected to be modernised in the years to come, for instance in Emmenspitz and Cheneviers. In total, the incineration capacities will not increase in Switzerland.

Background / market factors / legal framework

Switzerland is one of the countries that were significantly involved in developing modern waste incineration. The main reason for this is the fact that there is a shortage of suitable land for landfill sites because of the topography of the alpine country.

million tonnes 7,0 6,0 5,0 Composting, AD 4,0 ■ Material recycling 3,0 ■ Thermal treatment, incineration 2,0 ■ Landfilling 1,0 Source: Eurostat

2014

2015

2016

2017

Figure 230: Shares of incineration, recycling and landfilling of municipal solid waste in Switzerland

Even though Switzerland is not an EU member country, it has been complying with the EU specifications for several years, because the country is lacking space for landfilling. This holds true for both the regulations of the Landfill Directive on landfilling biodegradable waste and the specifications of the EU Waste Framework Directive for a 50% recycling share by 2020.

(...)

2008

2009

2010

2012

2013

(...)

A National Action Plan on Green Growth for the years between 2014 and 2020 was published in 2014. The plan does not only require the development of policies to increase recycling rates, but also to promote energy from renewable sources such as waste, biogas and biomass.

As a result, in mid-2014, Vietnam introduced a feed-in tariff for power produced by energy recovery of waste, amounting to 2.114 VND/kWh (~ 8.60 EURct/kWh). This is 25% higher than the tariff for wind power plants.

As it is a promising future market, WtE is also an issue in bilateral negotiations between Vietnam and other countries, mainly Japan and South Korea. Theses negotiations have also resulted in financial incentives. Furthermore, Vietnam's Deputy Prime Minister announced to strengthen the cooperation with Australia in terms of expanding the WtE capacities. Amongst others, Australian energy firm Trisun Energy has announced to invest in Vietnam.

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Legislation Waste Management National Action Plan on Green Growth 2014-2020 Feed-in Tariff 2,114 VND/kWh (~ 0.086 EUR/kWh) in force likely to be in force implementation status unclear

Figure 97: Legislation and waste management plans in Vietnam

Plants

In 2018, the first modern WtE plant in Vietnam went online in the city of Can Tho, the fourth largest city in Vietnam. The project was developed by China Everbright.

According to information of the German public development cooperation agency GIZ, even before 30 small-scale incinerators for solid waste installed in rural areas of Vietnam were operational. Nevertheless, it remains uncertain which waste streams are incinerated at the facilities. We do not have any information on plants that treat MSW thermally. Due to their low capacities, we assume these facilities to be solid biomass incinerators.

In 2017, Hanoi's municipal utility URENCO and Japanese manufacturer Hitachi Zosen put their 30,000 tpy commercial and hazardous waste plant in Hanoi into operation. However, due to the input of hazardous waste, we do not classify this as a WtE plant according to the definition of this report.

(...)

plant asset was constructed. The vast majority of them use grate incineration technology, while the biomass plants are usually equipped with fluidised bed technology.

For the biomass plant in Hämeenkyrö, it was announced that co-incineration of RDF from C&I waste sources should start in early 2017. However, this waste will also mainly consist of wooden material. This facility does therefore not stand for a trend towards a general comeback of waste co-incineration in biomass plants. Until mid-2018, there have not been any news that co-incineration started.

Market development

Basically, the construction of WtE capacities in Finland has come to an end. The existing WtE asset is already larger than initially planned. The plant in Leppävirta already represents the closure of a gap in a more rural region.

A similar project is underway in the city of Salo. It has been delayed for several years for legal issues regarding the awarding of the waste amounts to Ekokem in 2014. However, in 2017, the Supreme Court decided in favour of Ekokem. After the legal issue was settled, a new waste management firm named Lounavoima Oy was founded to finally develop the WtE facility. German based company Steinmüller Babcock Environment GmbH has been chosen to deliver, install and commission the extended boiler. The single-line plant should be able to process around 120,000 t/a of municipal and commercial waste from the cities of Turku and Salo and should be operational by the end of 2020.

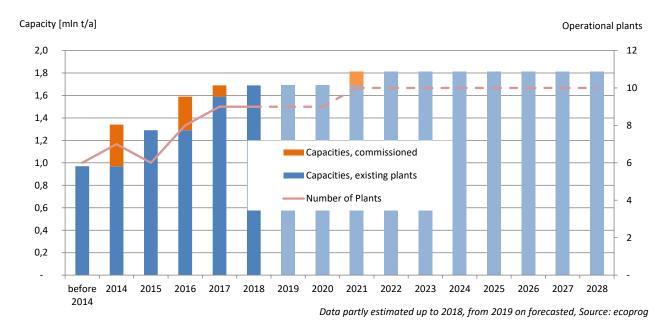


Figure 146: Development of plants and capacities in Finland

(...)

The younger RDF plants use fluidised bed technology. This also changes the competitive landscape among the technology providers. The RDF plant in Daegu was equipped by Foster Wheeler and started operations in 2014. The project in Pohang should be equipped with a bubbling fluidised bed boiler supplied by Andritz.

active under construction Sangwon 12 approved Capacity unknown planned Source: ecoprog discussed Gangwon 11 Dongducheon Gyeonggi 14 Gangwon 6 angju 7 0 Gangwon 5 Cheongju 1 Chungbuk 7 ng-gun 5 Chungju Scale capacity Bonghwa-gun O^{100 kt/a} Chungbuk 5 Eumseong-gun Chungbuk 3 Cheongju 5 250 kt/a eonaiu 4 Chungnam 3 Chungnam 6 Cheong Chungbuk 500 kt/a hungnam 7 Chungnam 2 Daejeon 1 Gimcheon Gumi-si Geumsangun Chilgok-gun Chilgok-gun Daegu RDF Gyeongsan 3 Geochang-gun Cheongdo-gun Buan-gun Gochang-gun Hapcheon-gun Changnyeong-gun Changnyeong-gun 2 Damyang-gun 1 an-gun Gijang-gun 2 Gwangju Hadong-gur Coneung Qun 0 28 0 0

Figure 85: Locations of plants and projects in South Korea

Apart from the project in Pohang, South Korean energy provider Posco Energy was involved in the realisation of the latest RDF project in Busan and subcontracted AE&E Group, another European manufacturer from Austria, for delivering technology.

Extract, Chapter 6, National markets, USA, Data appendix (plants and projects)

(...)

Fosston

Polk County

Fosston Industrial Park, 708 8th Street NW

MN 56542 Fosston Tel.: 001-218 435-6501 Status: active

Capacity (t/a): 26,112

Remarks: As of 06/2017, the facility is currently undergoing an upgrade and expansion process. Polk County Environmental Services received a USD 9.25 million funding for phase 2. Moreover, an organic compost site is going to be constructed at the site. The facility provides steam to three local food processing businesses.

Unit: 1

Start of operation: 1988 Capacity (t/h): 1.7

Incineration mode: moving grate

Flue gas cleaning: Duct Sorbent Dry Injection (Sodium Bicarbonate) / Electrostatic Precipitator / Acticated

Carbon Injection

Unit: 2

Start of operation: 1988 Capacity (t/h): 1.7

Incineration mode: moving grate

Flue gas cleaning: Duct Sorbent Dry Injection (Sodium Bicarbonate) / Electrostatic Precipitator / Acticated

Carbon Injection

Franklin County

Status: discussed

Remarks: As of 08/2019, most of Franklin County's waste is being landfilled, but the site is close to capacity. The County is currently deciding on the scale of the plant. According the director of Solid Waste Management, the facility would also accept waste from other counties.

French Island

Xcel Energy 200 S. Bainbridge St., La Crosse

WI 54603 French Island Tel.: 001 (715) 839-2565

Status: active

Capacity (t/a): 127,488

Power production capacity (MW): 32,0

Remarks: In 01/2017, Xcel Energy's contract with La Crosse County, Wisconsin, was prolonged until 2030. Under the amended deal, La Crosse is required to deliver 70,000 tpy of waste to the facility until 2030. In 2016, it supplied 76,000 tpy.

<u> Unit: 1</u>

Start of operation: 1987 Capacity (t/h): 8.3

Incineration mode: RDF-Spreader Stoker, Water Wall

urnace

Flue gas cleaning: Duct Sorbent Dry Injection / Fabric

Filter / Selective Non Catalytic Reduction Manufacturer furnace: Energy Products of Idaho

Unit: 2

Start of operation: 1987 Capacity (t/h): 8.3

Incineration mode: RDF-Spreader Stoker, Water Wall

furnace

Flue gas cleaning: Duct Sorbent Dry Injection / Fabric

Filter / Selective Non Catalytic Reduction Manufacturer furnace: Energy Products of Idaho

Ft. Lauderdale

Wheelabrator South Broward, Inc. 4400 South State Road 7 FL 33314 Ft. Lauderdale Tel.: 954-581-6606

Status: active

Capacity (t/a): 720,000

Power production capacity (MW): 66.0

<u> Unit: 1</u>

Start of operation: 1991 Capacity (t/h): 31.3

Incineration mode: Mass Burn, Water Wall furnace Flue gas cleaning: Spray Dryer Absorber/Scrubber / Fabric Filter / Selective Non Catalytic Reduction /

Activated Carbon Injection
Manufacturer furnace: Von Roll

Unit: 2

Start of operation: 1991 Capacity (t/h): 31.3

Incineration mode: Mass Burn, Water Wall furnace Flue gas cleaning: Spray Dryer Absorber/Scrubber / Fabric Filter / Selective Non Catalytic Reduction /

Activated Carbon Injection
Manufacturer furnace: Von Roll

Unit: 3

Start of operation: 1991 Capacity (t/h): 31.3

Incineration mode: Mass Burn, Water Wall furnace Flue gas cleaning: Spray Dryer Absorber/Scrubber / Fabric Filter / Selective Non Catalytic Reduction /

Activated Carbon Injection Manufacturer furnace: Von Roll

Fulton

Extract, Chapter 6, National markets, Sweden, Data appendix (plants and projects)

(...)

Capacity (t/h): 5,0

Incineration mode: horizontal grate Flue gas cleaning: Dry Scrubbing Manufacturer furnace: Noell

Manufacturer flue gas cleaning: ABB, Fläkt

Karlstad

Karlstads Energi AB Hedenverket 651 84 Karlstad Tel.: +46 54 540 7110 johan.thelander@karlstad.se

Status: active

Capacity (t/a): 107,520 Real throughput (t/a): 48,040

Power production capacity (MW): 17.0 Heat production capacity (MW): 20.4

<u>Unit: 1</u>

Start of operation: 1986 Capacity (t/h): 7,0

Incineration mode: horizontal grate

Flue gas cleaning: Fabric Filter / Wet Scrubbing

Manufacturer furnace: Noell

Manufacturer flue gas cleaning: ABB, Fläkt

Unit: 2

Start of operation: 1986 Capacity (t/h): 7.0

Incineration mode: moving grate

Flue gas cleaning: Fabric Filter / Flue Gas

Condensation

Manufacturer furnace: B&W Vølund

Manufacturer flue gas cleaning: ABB Fläkt, Götaverken

Miljö

Kiruna

Kiruna Värmeverk AB Värmeverksvägen 12

98185 Kiruna

Tel.: +46 0980 70723 Jan.Fjordell@tvab.kiruna.se

Status: active

Capacity (t/a): 32,256 Real throughput (t/a): 60,800 Power production capacity (MW): 3.1 Heat production capacity (MW): 17.7

Unit: 1

Start of operation: 1985 Capacity (t/h): 2.1

Incineration mode: VS Grate, air-cooled Flue gas cleaning: Wet Scrubbing Manufacturer furnace: Vølund

Manufacturer flue gas cleaning: Götaverken Miljö

Unit: 2

Start of operation: 1985 Capacity (t/h): 2.1

Incineration mode: VS Grate, air-cooled Flue gas cleaning: Wet Scrubbing Manufacturer furnace: Vølund

Manufacturer flue gas cleaning: Götaverken Miljö

Köping

Vafab Miljö AB Norsavägen 13 731 98 Köping Tel.: +46 22129491

sture.pettersson@vafabmiljo.se

Status: active Capacity (t/a): 38,400 Real throughput (t/a): 29,380 Power production capacity (MW): 12.0 Heat production capacity (MW): 9.9

Unit: 1

Start of operation: 1972 Capacity (t/h): 5.0

Incineration mode: moving grate Flue gas cleaning: Fabric Filter Manufacturer furnace: Kockum Manufacturer flue gas cleaning: Fläkt

Lidköping

Lidköpings Värmeverk AB Sjöhagsvägen 8

531 88 Lidköping Tel.: +46 510 - 770 290 jan-eric.isaksson@lidkoping.se

Status: active

Capacity (t/a): 163,584 Real throughput (t/a): 90,480 Power production capacity (MW): 4.0 Heat production capacity (MW): 38.1

Remarks: As of 04/2019, the company Westco Miljø will supply 33,000 tons of RDF to the plants in Boras and Lidköping in 2019. In fall 2012 Babcock & Wilcox Vølund AB supplied a semi-dry flue gas cleaning system to the plant. The customer took over the installation in March 2013.

Unit: 1

Start of operation: 2013 Capacity (t/h): 9.3

Incineration mode: water-cooled DynaGrate

Manufacturer furnace: BW Vølund

Unit: 2

Start of operation: 1984 Capacity (t/h): 6.0

Incineration mode: fluidised bed Flue gas cleaning: Dry Scrubbing

Extract, Appendix, Plant register

()		Alexandria, USA	998	APP BioSNG plant, United Kingdom	950
A II	074	Alexandria (Virginia), USA	999	Årdal, Norway	841
Aalborg, Denmark	671	Alkmaar, Netherlands	830	Ardèche, France	700
Aars, Denmark	671	Allington, United Kingdom	950	Ardley, United Kingdom	950
Aberdeen, United Kingdom	950	Almena, USA	999	Arecibo, Puerto Rico	1026
Abiko, Japan	304	Altay Prefecture, China	105	Arezzo, Italy	798
Abiko 2, Japan	304	Ama, Japan	308	Argenteuil, France	700
Abilene, USA	998	Amagasaki, Japan	308	Århus, Denmark	671
Abu Dhabi TAQA, United Arab Emirates	71	Amagasaki City, Japan	309	Aridagawa, Arida District, Japan	311
Accra 2, Ghana	75	Amagi, Japan	309	Arita, Nishimatsuura District,	311
Acerra RDF, Italy	797	Amakusa, Japan	309	Japan	011
Addis Ababa, Ethiopia	978	Amakusa 2, Japan	309	Arnoldstein, Austria	635
Addu, Maldives	611	Amakusa 3, Japan	309	Arques, France	700
Adelaide, Australia	619	Amakusa City, Japan	309	Arrabloy, France	701
Agano, Japan	304	Ambala, India	267	Arua, Uganda	79
Agawam, USA	998	Ami Town, Inashiki District,	310	Arundel, United Kingdom	951
Ageo City, Japan	305	Japan Amilly France	700	Asago, Japan	311
Agra, India	267	Amilly, France	700	Asahi City, Japan	311
Aguni, Japan	305	Amman, Jordan	76	Asahi Town, Japan	312
Ahmedabad 1, India	267	Amol, Iran	295	Asahikawa, Japan	312
Ahmedabad 2, India	267	Åmotfors, Sweden	905	Asaka, Japan	312
Ahmedabad 3, India	267	Ampthill, United Kingdom	950	Asan 1, South Korea	541
·	295	Amritsar, India	267	Asan 2, South Korea	541
Ahwaz, Iran		Amsdorf RDF, Germany	742	Asan 4, South Korea	541
Aibetsu Town, Kamikawa district, Japan	305	Amsterdam, Netherlands	830	Asan 5, South Korea	541
Aikawa Town, Japan	305	Anantapur, India	267	Asan 6, South Korea	541
Ainan, Minamiuwa District,	305	Anantnag, India	268	Asan RDF, South Korea	541
Japan Aioi, Japan	306	Andernach RDF, Germany	742	Ashikaga, Japan	312
Aira, Japan	306	Ando, Japan	310	Ashikita, Japan	312
Aizumi, Japan	306	Andorra la Vella, Andorra	978	Ashiya City, Japan	313
Aizuwakamatsu, Japan	306	Anji, China	105	Askar, Bahrain	74
Akaiwa, Japan	306	Anjo City, Japan	310	Aso, Japan	313
Akashi, Japan	307	Annaka City, Japan	310	Asukamura, Japan	313
Akawa, Japan	307	Anqing, China	105	Atami City, Japan	313
Aki, Japan	307	Anqing 2, China	105	Atsugi, Japan	313
Aki City, Japan	307	Anqing 3, China	106	Auburn, USA	999
Akishima City, Japan	307	Ansan, South Korea	541	Augsburg, Germany	743
Akita, Japan	308	Anshun, China	106	Aurangabad, India	268
Akkeshi, Akkeshi District,,	308	Antibes, France	700	Avesta, Sweden	905
Japan	300	Antwerpen 1, Belgium	644	Awa City, Japan	313
Ako, Japan	308	Antwerpen 3, Belgium	644	Awaji, Japan	314
Aksu East, China	105	Anyang, China	106	Awara City, Japan	314
Aksu West, China	105	Anyang Hua, China	106	Awashimaura, Japan	314
Akune City, Japan	308	Anyang Longan, China	106	Awka, Nigeria	77
Ål, Norway	841	Anyang Pyongchon, South	541	Ayabe City, Japan	314
Alaer, China	105	Korea Aomori, Japan	310	Ayutthaya, Thailand	594
Albano Laziale RDF, Italy	797	Aomori 2, Japan	311	()	554
Ålesund, Norway	841	Admon 2, Jupan	0.1	\···/	

Price and product information

Contact:

m.doeing@ecoprog.com

+49 (0) 221 788 03 88 11

You can order the market report here:

https://www.ecoprog.com/publikationen/energiewirtschaft/waste-to-energy/order-waste-to-energy.htm

Price models:

Single user copy: 3,900.- EUR plus VAT

Company version: 7,800.- EUR plus VAT

Corporate version: POA

Explanation:

Single user copy: personal copy (personalised and password-protected PDF file, sent via email)

Company version: company-wide copy (legal entity), sent via email

Corporate version: for different, legally connected companies (e.g. sister companies, subsidiaries abroad).

Price depends on number of companies and employees

Additionally, you can order copies of the study on paper (hardcover book).

Price: 150.- EUR plus VAT per book

Add-ons:

In addition to the study, all customers will get access to the following products for one year:

- WtE Monitor: updates on current projects worldwide (emailed every two weeks)
- WtE Project Tracker (MS Excel file): list of all known projects worldwide (emailed every three months)
- <u>WtE Archive:</u> online access to the world's largest expert archive on the WtE market with currently more than 12,000 news on projects and companies since 2009

Subscription:

Subscribers receive the updated study once a year and all the aforementioned additional products within the subscription period.

Price: single user copy 2,900.- EUR plus VAT, company version 5,800.- EUR plus VAT.

The minimum subscription period is two years. The subscription can be cancelled with eight weeks notice before expiration. Otherwise, it will be extended for another year.

The subscription cannot be ordered online. If you would like to subscribe to the study, please contact us: m.doeing@ecoprog.com