Waste to Energy 2019/2020

Technologies, plants, projects, players and backgrounds of the global thermal waste treatment business

12th edition, 2019
ecoprog GmbH

Waste to Energy 2019/2020

The leading **standard reference in the WtE industry**. On around **1,100 pages** the **12th edition** includes up-to-date information and analysis:

- more than **2,430 waste treatment plants** with more than **4,800 incineration units** worldwide, including details on capacity, start of operation, technology, flue gas treatment, manufacturer and operator
- more than **1,100 WtE projects throughout the world**
- treatment technologies and market shares of important operators and technology providers
- market factors, planning requirements and operating modes of thermal waste treatment
- investment and operational costs and revenues with **exemplary calculations**
- a **forecast of the global WtE market until 2028, by country**, including new plants and capacities, shutdowns and investment volumes per year, explained in a comprehensible and detailed way

In addition to the study, all customers will receive the following products for one year:

- **ecoprog WtE Monitor**: update on international construction and modernisation projects (emailed every two weeks)
- **ecoprog WtE Project Tracker**: complete list of all known projects worldwide (MS Excel file), including status, capacity and commissioning (emailed every three months)
- **ecoprog WtE Archive**: online access to the world’s largest expert archive on the WtE market with currently more than 12,000 news since 2009

The study is available in English language, starting from **2,900.- EUR plus VAT**. **Please see the end of this extract for detailed price and contact information.**

Background

The market for thermal treatment and energetic recovery of residual and other types of solid waste is growing continuously. Increasing waste amounts, shrinking landfill spaces in agglomerations and higher ecological standards stimulate this growth throughout the world.

Today, around 2,450 thermal waste treatment plants are active worldwide. They have a disposal capacity of around 368 million tons of waste per year. Only in 2018, more than 60 new plants had been installed with a total treatment capacity of more than 14 million tpy. We estimate nearly 2,700 plants with a capacity of more than 530 million tpy to be operational by 2028.
Content

Preface

15

Management summary

17

Part I: Market and competition

22

1. This year’s highlights and trends

23

2. Plants worldwide

27

 2.1 Europe

 2.2 Asia

 2.3 North America

 2.4 Rest of the world

39

3. Market development & forecast

39

 3.1 Global market

 3.2 Europe

 3.3 Asia

 3.4 North America

 3.5 Rest of the world

4. Operators: competition and market shares

51

5. Technology providers: competition and market shares

54

6. National markets

65

 6.1 Africa & Middle East

 62

 South Africa

 63

 United Arab Emirates

 67

 Rest of Africa & Middle East

 72

 6.2 Asia

 81

 China

 82

 India

 257

 Indonesia

 283

 Iran

 291

 Japan

 298

 Malaysia

 507

 Pakistan

 514

 Philippines

 518

 Singapore

 527

 South Korea

 534

 Taiwan

 573

 Thailand

 587

 Vietnam

 600

 Rest of Asia

 608

 6.3 Australia & Pacific

 613

 Australia

 614

 Rest of Australia & Pacific

 622

 6.4 Europe

 623

 Albania

 624

 Austria

 629

 Belgium

 639

 Croatia

 654

 Czech Republic

 657

 Denmark

 665

 Estonia

 681

 Finland

 685

 France

 694

 Germany

 737

 Greece

 775

 Hungary

 780

 Ireland

 785

 Italy

 791

 Latvia

 813

 Lithuania

 816

 Luxembourg

 820

 Malta

 822

 Netherlands

 825

 Norway

 836

 Poland

 846

 Portugal

 860

 Romania

 867

 Russia

 870

 Serbia

 879

 Slovakia

 882
<table>
<thead>
<tr>
<th>Country</th>
<th>Code</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slovenia</td>
<td>886</td>
<td>USA</td>
</tr>
<tr>
<td>Spain</td>
<td>890</td>
<td>Rest of North America & Caribbean</td>
</tr>
<tr>
<td>Sweden</td>
<td>899</td>
<td>6.6 South & Central America</td>
</tr>
<tr>
<td>Switzerland</td>
<td>914</td>
<td>Argentina</td>
</tr>
<tr>
<td>Turkey</td>
<td>929</td>
<td>Brazil</td>
</tr>
<tr>
<td>Ukraine</td>
<td>934</td>
<td>Chile</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>940</td>
<td>Colombia</td>
</tr>
<tr>
<td>Rest of Europe</td>
<td>977</td>
<td>Mexico</td>
</tr>
<tr>
<td>6.5 North America</td>
<td>980</td>
<td>Rest of South & Central America</td>
</tr>
<tr>
<td>Canada</td>
<td>981</td>
<td></td>
</tr>
</tbody>
</table>

Part II: Background

7 Scope

7.1 Technology
7.2 Type of fuel or waste
7.3 Co- and mono-incinerators
7.4 Geographical differentiation

8 Technology

8.1 Delivery and sorting / pretreatment of fuel
8.2 Thermal treatment: incineration & gasification
8.3 Generation of energy
8.4 Flue gas cleaning

9 Costs and revenues

9.1 Investment sum
9.2 Operating costs
9.3 Revenues

10 Framework /market factors

10.1 Shortage of land
10.2 Environmental reasons for limiting the use of landfill sites
10.3 Energetic use
10.4 Environmental criticism of WtE
10.5 Recycling or WtE?
10.6 Pretreatment plants: competition and clients

Methodology/data

Glossary, abbreviations

Appendix 1: Known projects worldwide

Appendix 2: Prognosis data

Appendix 3: Plant register
Switzerland

Management summary

The market for the construction of new waste incineration plants in Switzerland is saturated. Individual lines can be expected to be modernised in the years to come, for instance in Emmenspitz and Cheneviers. In total, the incineration capacities will not increase in Switzerland.

Background / market factors / legal framework

Switzerland is one of the countries that were significantly involved in developing modern waste incineration. The main reason for this is the fact that there is a shortage of suitable land for landfill sites because of the topography of the alpine country.

Figure 230: Shares of incineration, recycling and landfiling of municipal solid waste in Switzerland

Even though Switzerland is not an EU member country, it has been complying with the EU specifications for several years, because the country is lacking space for landfilling. This holds true for both the regulations of the Landfill Directive on landfilling biodegradable waste and the specifications of the EU Waste Framework Directive for a 50% recycling share by 2020.

(...)

<table>
<thead>
<tr>
<th>Inhabitants [million]</th>
<th>8.54</th>
<th>Number of waste incineration plants</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Municipal solid waste [1,000 t]</td>
<td>6,060</td>
<td>Incineration capacity [1,000 Mg/a]</td>
<td>4,016</td>
</tr>
<tr>
<td>of which thermally treated [1,000 t]</td>
<td>2,880</td>
<td>Average age of incineration lines</td>
<td>22</td>
</tr>
<tr>
<td>Electricity from waste 2016 [GWh]</td>
<td>2,422</td>
<td>Share of total electricity production 2015 [%]</td>
<td>3.6</td>
</tr>
<tr>
<td>Heat from waste 2016 [TJ]</td>
<td>13,654</td>
<td>Share of total heat production 2015 [%]</td>
<td>62.2</td>
</tr>
</tbody>
</table>

Source: Eurostat
A National Action Plan on Green Growth for the years between 2014 and 2020 was published in 2014. The plan does not only require the development of policies to increase recycling rates, but also to promote energy from renewable sources such as waste, biogas and biomass.

As a result, in mid-2014, Vietnam introduced a feed-in tariff for power produced by energy recovery of waste, amounting to 2.114 VND/kWh (~ 8.60 EURct/kWh). This is 25% higher than the tariff for wind power plants.

As it is a promising future market, WtE is also an issue in bilateral negotiations between Vietnam and other countries, mainly Japan and South Korea. Theses negotiations have also resulted in financial incentives. Furthermore, Vietnam's Deputy Prime Minister announced to strengthen the cooperation with Australia in terms of expanding the WtE capacities. Amongst others, Australian energy firm Trisun Energy has announced to invest in Vietnam.

Figure 97: Legislation and waste management plans in Vietnam

<table>
<thead>
<tr>
<th>Year</th>
<th>Legislation</th>
<th>Waste Management</th>
<th>Feed-in Tariff</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plants

In 2018, the first modern WtE plant in Vietnam went online in the city of Can Tho, the fourth largest city in Vietnam. The project was developed by China Everbright.

According to information of the German public development cooperation agency GIZ, even before 30 small-scale incinerators for solid waste installed in rural areas of Vietnam were operational. Nevertheless, it remains uncertain which waste streams are incinerated at the facilities. We do not have any information on plants that treat MSW thermally. Due to their low capacities, we assume these facilities to be solid biomass incinerators.

In 2017, Hanoi’s municipal utility URENCO and Japanese manufacturer Hitachi Zosen put their 30,000 tpy commercial and hazardous waste plant in Hanoi into operation. However, due to the input of hazardous waste, we do not classify this as a WtE plant according to the definition of this report.

(...)

Waste to Energy 2019/2020
© ecoprog GmbH, www.ecoprog.com
plant asset was constructed. The vast majority of them use grate incineration technology, while the biomass plants are usually equipped with fluidised bed technology.

For the biomass plant in Hämeenkyrö, it was announced that co-incineration of RDF from C&I waste sources should start in early 2017. However, this waste will also mainly consist of wooden material. This facility does therefore not stand for a trend towards a general comeback of waste co-incineration in biomass plants. Until mid-2018, there have not been any news that co-incineration started.

Market development

Basically, the construction of WtE capacities in Finland has come to an end. The existing WtE asset is already larger than initially planned. The plant in Leppävirta already represents the closure of a gap in a more rural region.

A similar project is underway in the city of Salo. It has been delayed for several years for legal issues regarding the awarding of the waste amounts to Ekokem in 2014. However, in 2017, the Supreme Court decided in favour of Ekokem. After the legal issue was settled, a new waste management firm named Lounavoima Oy was founded to finally develop the WtE facility. German based company Steinmüller Babcock Environment GmbH has been chosen to deliver, install and commission the extended boiler. The single-line plant should be able to process around 120,000 t/a of municipal and commercial waste from the cities of Turku and Salo and should be operational by the end of 2020.

Figure 146: Development of plants and capacities in Finland

(…)

Data partly estimated up to 2018, from 2019 on forecasted, Source: ecoprog

(…)

Waste to Energy 2019/2020
© ecoprog GmbH, www.ecoprog.com 688
The younger RDF plants use fluidised bed technology. This also changes the competitive landscape among the technology providers. The RDF plant in Daegu was equipped by Foster Wheeler and started operations in 2014. The project in Pohang should be equipped with a bubbling fluidised bed boiler supplied by Andritz.

Apart from the project in Pohang, South Korean energy provider Posco Energy was involved in the realisation of the latest RDF project in Busan and subcontracted AE&E Group, another European manufacturer from Austria, for delivering technology.
Fosston

Polk County
Fosston Industrial Park, 708 8th Street NW
MN 56542 Fosston
Tel.: 001-218 435-6501
Status: active
Capacity (t/а): 26,112

Remarks: As of 06/2017, the facility is currently undergoing an upgrade and expansion process. Polk County Environmental Services received a USD 9.25 million funding for phase 2. Moreover, an organic compost site is going to be constructed at the site. The facility provides steam to three local food processing businesses.

Unit: 1
Start of operation: 1988
Capacity (t/h): 1.7
Incineration mode: moving grate
Flue gas cleaning: Duct Sorbent Dry Injection (Sodium Bicarbonate) / Electrostatic Precipitator / Activated Carbon Injection

Unit: 2
Start of operation: 1988
Capacity (t/h): 1.7
Incineration mode: moving grate
Flue gas cleaning: Duct Sorbent Dry Injection (Sodium Bicarbonate) / Electrostatic Precipitator / Activated Carbon Injection

Franklin County

Status: discussed

Remarks: As of 08/2019, most of Franklin County’s waste is being landfilled, but the site is close to capacity. The County is currently deciding on the scale of the plant. According the director of Solid Waste Management, the facility would also accept waste from other counties.

French Island

Xcel Energy
200 S. Bainbridge St., La Crosse
WI 54603 French Island
Tel.: 001 (715) 839-2565
Status: active
Capacity (t/а): 127,488
Power production capacity (MW): 32.0

Remarks: In 01/2017, Xcel Energy’s contract with La Crosse County, Wisconsin, was prolonged until 2030. Under the amended deal, La Crosse is required to deliver 70,000 tpy of waste to the facility until 2030. In 2016, it supplied 76,000 tpy.

Unit: 1
Start of operation: 1987
Capacity (t/h): 8.3
Incineration mode: RDF-Spreader Stoker, Water Wall furnace
Flue gas cleaning: Duct Sorbent Dry Injection / Fabric Filter / Selective Non Catalytic Reduction
Manufacturer furnace: Energy Products of Idaho

Unit: 2
Start of operation: 1987
Capacity (t/h): 8.3
Incineration mode: RDF-Spreader Stoker, Water Wall furnace
Flue gas cleaning: Duct Sorbent Dry Injection / Fabric Filter / Selective Non Catalytic Reduction
Manufacturer furnace: Energy Products of Idaho

Ft. Lauderdale

Wheelabrator South Broward, Inc.
4400 South State Road 7
FL 33314 Ft. Lauderdale
Tel.: 954-581-6606
Status: active
Capacity (t/а): 720,000
Power production capacity (MW): 66.0

Unit: 1
Start of operation: 1991
Capacity (t/h): 31.3
Incineration mode: Mass Burn, Water Wall furnace
Flue gas cleaning: Spray Dryer Absorber/Scrubber / Fabric Filter / Selective Non Catalytic Reduction / Activated Carbon Injection
Manufacturer furnace: Von Roll

Unit: 2
Start of operation: 1991
Capacity (t/h): 31.3
Incineration mode: Mass Burn, Water Wall furnace
Flue gas cleaning: Spray Dryer Absorber/Scrubber / Fabric Filter / Selective Non Catalytic Reduction / Activated Carbon Injection
Manufacturer furnace: Von Roll

Unit: 3
Start of operation: 1991
Capacity (t/h): 31.3
Incineration mode: Mass Burn, Water Wall furnace
Flue gas cleaning: Spray Dryer Absorber/Scrubber / Fabric Filter / Selective Non Catalytic Reduction / Activated Carbon Injection
Manufacturer furnace: Von Roll

Fulton

(...
Extract, Chapter 6, National markets, Sweden, Data appendix (plants and projects)

(...)

Capacity (t/h): 5.0
Incineration mode: horizontal grate
Flue gas cleaning: Dry Scrubbing
Manufacturer furnace: Noell
Manufacturer flue gas cleaning: ABB, Fläkt

Karlstad

Karlstads Energi AB
Hedenverket
651 84 Karlstad
Tel.: +46 54 540 7110
johan.thelander@karlstad.se
Status: active
Capacity (t/a): 107,520
Real throughput (t/a): 48,040
Power production capacity (MW): 17.0
Heat production capacity (MW): 20.4

Unit: 1
Start of operation: 1986
Capacity (t/h): 7.0
Incineration mode: horizontal grate
Flue gas cleaning: Fabric Filter / Wet Scrubbing
Manufacturer furnace: Noell
Manufacturer flue gas cleaning: ABB, Fläkt

Unit: 2
Start of operation: 1986
Capacity (t/h): 7.0
Incineration mode: moving grate
Flue gas cleaning: Fabric Filter / Flue Gas Condensation
Manufacturer furnace: B&W Vølund
Manufacturer flue gas cleaning: ABB Fläkt, Götaerverken Miljö

Kiruna

Kiruna Värmeverk AB
Värmeverksgatan 12
98185 Kiruna
Tel.: +46 0980 70723
Jan.Fjordell@tvab.kiruna.se
Status: active
Capacity (t/a): 32,256
Real throughput (t/a): 60,800
Power production capacity (MW): 3.1
Heat production capacity (MW): 17.7

Unit: 1
Start of operation: 1985
Capacity (t/h): 2.1
Incineration mode: VS Grate, air-cooled
Flue gas cleaning: Wet Scrubbing
Manufacturer furnace: Vølund
Manufacturer flue gas cleaning: Götaerverken Miljö

Unit: 2
Start of operation: 1984
Capacity (t/h): 6.0
Incineration mode: fluidised bed
Flue gas cleaning: Dry Scrubbing

Köping

Vafab Miljö AB
Norsvägen 13
731 98 Köping
Tel.: +46 22129491
sture.pettersson@vafabmiljo.se
Status: active
Capacity (t/a): 38,400
Real throughput (t/a): 29,380
Power production capacity (MW): 12.0
Heat production capacity (MW): 9.9

Unit: 1
Start of operation: 1972
Capacity (t/h): 5.0
Incineration mode: moving grate
Flue gas cleaning: Fabric Filter
Manufacturer furnace: Kockum
Manufacturer flue gas cleaning: Götaerverken Miljö

Lidköping

Lidköpings Värmeverk AB
Sjöhagsvägen 8
531 88 Lidköping
Tel.: +46 510 - 770 290
jan-eric.isaksson@lidkoping.se
Status: active
Capacity (t/a): 163,584
Real throughput (t/a): 90,480
Power production capacity (MW): 4.0
Heat production capacity (MW): 38.1

Remarks: As of 04/2019, the company Westco Miljö will supply 33,000 tons of RDF to the plants in Boras and Lidköping in 2019. In fall 2012 Babcock & Wilcox Vølund AB supplied a semi-dry flue gas cleaning system to the plant. The customer took over the installation in March 2013.

Unit: 1
Start of operation: 2013
Capacity (t/h): 9.3
Incineration mode: water-cooled DynaGrate
Manufacturer furnace: BW Vølund

Unit: 2
Start of operation: 1984
Capacity (t/h): 6.0
Incineration mode: fluidised bed
Flue gas cleaning: Dry Scrubbing

(...)

Waste to Energy 2019/2020
© ecoprog GmbH, www.ecoprog.com
Extract, Appendix, Plant register

<table>
<thead>
<tr>
<th>City</th>
<th>Country</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aalborg</td>
<td>Denmark</td>
<td>671</td>
</tr>
<tr>
<td>Aars</td>
<td>Denmark</td>
<td>671</td>
</tr>
<tr>
<td>Aberdeen, United Kingdom</td>
<td>United Kingdom</td>
<td>950</td>
</tr>
<tr>
<td>Abiko</td>
<td>Japan</td>
<td>304</td>
</tr>
<tr>
<td>Abiko 2, Japan</td>
<td>Japan</td>
<td>304</td>
</tr>
<tr>
<td>Abilen, USA</td>
<td>USA</td>
<td>998</td>
</tr>
<tr>
<td>Abu Dhabi TAQA, United Arab Emirates</td>
<td>United Arab</td>
<td>71</td>
</tr>
<tr>
<td>Accra 2, Ghana</td>
<td>Ghana</td>
<td>75</td>
</tr>
<tr>
<td>Acerra RDF, Italy</td>
<td>Italy</td>
<td>797</td>
</tr>
<tr>
<td>Addis Ababa, Ethiopia</td>
<td>Ethiopia</td>
<td>978</td>
</tr>
<tr>
<td>Addu, Maldives</td>
<td>Maldives</td>
<td>611</td>
</tr>
<tr>
<td>Adelaide, Australia</td>
<td>Australia</td>
<td>619</td>
</tr>
<tr>
<td>Agano</td>
<td>Japan</td>
<td>304</td>
</tr>
<tr>
<td>Agawam, USA</td>
<td>USA</td>
<td>998</td>
</tr>
<tr>
<td>Age City, Japan</td>
<td>Japan</td>
<td>305</td>
</tr>
<tr>
<td>Agra, India</td>
<td>India</td>
<td>267</td>
</tr>
<tr>
<td>Aguni, Japan</td>
<td>Japan</td>
<td>305</td>
</tr>
<tr>
<td>Ahmedabad 1, India</td>
<td>India</td>
<td>267</td>
</tr>
<tr>
<td>Ahmedabad 2, India</td>
<td>India</td>
<td>267</td>
</tr>
<tr>
<td>Ahmedabad 3, India</td>
<td>India</td>
<td>267</td>
</tr>
<tr>
<td>Ahwaz, Iran</td>
<td>Iran</td>
<td>295</td>
</tr>
<tr>
<td>Aibetsu Town, Kamikawa district, Japan</td>
<td>Japan</td>
<td>305</td>
</tr>
<tr>
<td>Akawa Town, Japan</td>
<td>Japan</td>
<td>305</td>
</tr>
<tr>
<td>Annan, Minamiuwa District, Japan</td>
<td>Japan</td>
<td>305</td>
</tr>
<tr>
<td>Aoi, Japan</td>
<td>Japan</td>
<td>306</td>
</tr>
<tr>
<td>Aira, Japan</td>
<td>Japan</td>
<td>306</td>
</tr>
<tr>
<td>Aizumi, Japan</td>
<td>Japan</td>
<td>306</td>
</tr>
<tr>
<td>Aizuwakamatsu, Japan</td>
<td>Japan</td>
<td>306</td>
</tr>
<tr>
<td>Akaiwa, Japan</td>
<td>Japan</td>
<td>306</td>
</tr>
<tr>
<td>Akashi, Japan</td>
<td>Japan</td>
<td>307</td>
</tr>
<tr>
<td>Akawa, Japan</td>
<td>Japan</td>
<td>307</td>
</tr>
<tr>
<td>Aki, Japan</td>
<td>Japan</td>
<td>307</td>
</tr>
<tr>
<td>Aki City, Japan</td>
<td>Japan</td>
<td>307</td>
</tr>
<tr>
<td>Akishima City, Japan</td>
<td>Japan</td>
<td>307</td>
</tr>
<tr>
<td>Akita, Japan</td>
<td>Japan</td>
<td>308</td>
</tr>
<tr>
<td>Akkeshi, Akkeshi District, Japan</td>
<td>Japan</td>
<td>308</td>
</tr>
<tr>
<td>Aksu East, China</td>
<td>China</td>
<td>105</td>
</tr>
<tr>
<td>Aksu West, China</td>
<td>China</td>
<td>105</td>
</tr>
<tr>
<td>Akune City, Japan</td>
<td>Japan</td>
<td>308</td>
</tr>
<tr>
<td>Ål, Norway</td>
<td>Norway</td>
<td>841</td>
</tr>
<tr>
<td>Alaer, China</td>
<td>China</td>
<td>105</td>
</tr>
<tr>
<td>Albano Laziale RDF, Italy</td>
<td>Italy</td>
<td>797</td>
</tr>
<tr>
<td>Ålesund, Norway</td>
<td>Norway</td>
<td>841</td>
</tr>
<tr>
<td>Alexandria, USA</td>
<td>USA</td>
<td>998</td>
</tr>
<tr>
<td>Alexandria (Virginia), USA</td>
<td>USA</td>
<td>999</td>
</tr>
<tr>
<td>Akmaar, Netherlands</td>
<td>Netherlands</td>
<td>830</td>
</tr>
<tr>
<td>Alkmaar, Netherlands</td>
<td>Netherlands</td>
<td>830</td>
</tr>
<tr>
<td>Alkmaar, Netherlands</td>
<td>Netherlands</td>
<td>830</td>
</tr>
<tr>
<td>Almien, USA</td>
<td>USA</td>
<td>999</td>
</tr>
<tr>
<td>Altay Prefecture, China</td>
<td>China</td>
<td>105</td>
</tr>
<tr>
<td>Ama, Japan</td>
<td>Japan</td>
<td>308</td>
</tr>
<tr>
<td>Amagasaki, Japan</td>
<td>Japan</td>
<td>308</td>
</tr>
<tr>
<td>Amagasaki City, Japan</td>
<td>Japan</td>
<td>309</td>
</tr>
<tr>
<td>Amagi, Japan</td>
<td>Japan</td>
<td>309</td>
</tr>
<tr>
<td>Amakusa, Japan</td>
<td>Japan</td>
<td>309</td>
</tr>
<tr>
<td>Amakusa 2, Japan</td>
<td>Japan</td>
<td>309</td>
</tr>
<tr>
<td>Amakusa 3, Japan</td>
<td>Japan</td>
<td>309</td>
</tr>
<tr>
<td>Amakusa City, Japan</td>
<td>Japan</td>
<td>309</td>
</tr>
<tr>
<td>Ambaria, India</td>
<td>India</td>
<td>267</td>
</tr>
<tr>
<td>Ami Town, Inashiki District, Japan</td>
<td>Japan</td>
<td>310</td>
</tr>
<tr>
<td>Amilly, France</td>
<td>France</td>
<td>700</td>
</tr>
<tr>
<td>Amman, Jordan</td>
<td>Jordan</td>
<td>76</td>
</tr>
<tr>
<td>Amol, Iran</td>
<td>Iran</td>
<td>295</td>
</tr>
<tr>
<td>Âm motors, Sweden</td>
<td>Sweden</td>
<td>905</td>
</tr>
<tr>
<td>Amphill, United Kingdom</td>
<td>United Kingdom</td>
<td>950</td>
</tr>
<tr>
<td>Amritsar, India</td>
<td>India</td>
<td>267</td>
</tr>
<tr>
<td>Amsdorf RDF, Germany</td>
<td>Germany</td>
<td>742</td>
</tr>
<tr>
<td>Amsterdam, Netherlands</td>
<td>Netherlands</td>
<td>830</td>
</tr>
<tr>
<td>Anantapur, India</td>
<td>India</td>
<td>267</td>
</tr>
<tr>
<td>Anantnag, India</td>
<td>India</td>
<td>268</td>
</tr>
<tr>
<td>Andermach RDF, Germany</td>
<td>Germany</td>
<td>742</td>
</tr>
<tr>
<td>Ando, Japan</td>
<td>Japan</td>
<td>310</td>
</tr>
<tr>
<td>Andorra la Vella, Andorra</td>
<td>Spain</td>
<td>978</td>
</tr>
<tr>
<td>Anji, China</td>
<td>China</td>
<td>105</td>
</tr>
<tr>
<td>Anjo City, Japan</td>
<td>Japan</td>
<td>310</td>
</tr>
<tr>
<td>Annaka City, Japan</td>
<td>Japan</td>
<td>310</td>
</tr>
<tr>
<td>Anqing, China</td>
<td>China</td>
<td>105</td>
</tr>
<tr>
<td>Anqing 2, China</td>
<td>China</td>
<td>105</td>
</tr>
<tr>
<td>Anqing 3, China</td>
<td>China</td>
<td>106</td>
</tr>
<tr>
<td>Ansan, South Korea</td>
<td>Korea</td>
<td>541</td>
</tr>
<tr>
<td>Anshun, China</td>
<td>China</td>
<td>106</td>
</tr>
<tr>
<td>Antibes, France</td>
<td>France</td>
<td>700</td>
</tr>
<tr>
<td>Antwerpener, Belgium</td>
<td>Belgium</td>
<td>644</td>
</tr>
<tr>
<td>Antwerpener 3, Belgium</td>
<td>Belgium</td>
<td>644</td>
</tr>
<tr>
<td>Anyang, China</td>
<td>China</td>
<td>106</td>
</tr>
<tr>
<td>Anyang Hua, China</td>
<td>China</td>
<td>106</td>
</tr>
<tr>
<td>Anyang Longan, China</td>
<td>China</td>
<td>106</td>
</tr>
<tr>
<td>Anyang Pyongchon, South Korea</td>
<td>Korea</td>
<td>541</td>
</tr>
<tr>
<td>Aomori, Japan</td>
<td>Japan</td>
<td>310</td>
</tr>
<tr>
<td>Aomori 2, Japan</td>
<td>Japan</td>
<td>311</td>
</tr>
</tbody>
</table>

Waste to Energy 2019/2020

© ecoprog GmbH, www.ecoprog.com

1049
Price and product information

Contact:

m.doeing@ecoprog.com
+49 (0) 221 788 03 88 11

You can order the market report here:

Price models:

- Single user copy: 3,900.- EUR plus VAT
- Company version: 7,800.- EUR plus VAT
- Corporate version: POA

Explanation:

Single user copy: personal copy (personalised and password-protected PDF file, sent via email)
Company version: company-wide copy (legal entity), sent via email
Corporate version: for different, legally connected companies (e.g. sister companies, subsidiaries abroad). Price depends on number of companies and employees

Additionally, you can order copies of the study on paper (hardcover book).
- Price: 150.- EUR plus VAT per book

Add-ons:
In addition to the study, all customers will get access to the following products for one year:

- WtE Monitor: updates on current projects worldwide (emailed every two weeks)
- WtE Project Tracker (MS Excel file): list of all known projects worldwide (emailed every three months)
- WtE Archive: online access to the world’s largest expert archive on the WtE market with currently more than 12,000 news on projects and companies since 2009

Subscription:

Subscribers receive the updated study once a year and all the aforementioned additional products within the subscription period.

Price: single user copy 2,900.- EUR plus VAT, company version 5,800.- EUR plus VAT.

The minimum subscription period is two years. The subscription can be cancelled with eight weeks notice before expiration. Otherwise, it will be extended for another year.

The subscription cannot be ordered online. If you would like to subscribe to the study, please contact us:

m.doeing@ecoprog.com