The Market for Coal Power Plants in Europe

Market volumes – projects – strategies – trends

Cologne, March 2012
The Market for Coal Power Plants in Europe

Investments in constructing new coal power plants are increasing again in Europe. Between 2012 and 2020, approximately about 80 power plant units will be newly constructed or replaced, which is almost twice as many as in the prior period of equal length. On average, the new power plant units will be twice as large. Hence, the capacities for electricity generation from coal to be constructed from 2012 to 2020 will be about four times as large as those constructed between 2003 and 2011.

At the same time, the share of coal at the electricity industry’s energy mix decreases. At present, only 30 per cent of the European electricity is produced by incinerating coal – with a clear downward tendency. Generating electricity from coal is inexpensive, however, it is being criticised, mainly due to high CO₂ emissions. Thus, most countries’ energy strategies will more and more focus on renewable energies and gas-fired power plants in the future.

Nevertheless, constructing coal power plants is booming. This is mainly due to two reasons: Europe’s coal power plants are on average 34 years old. Some of them will be shut down in the years to come. And many of the old power plants that will continue to operate will have to be replaced completely instead of being modernised. Furthermore, the EU Large Combustion Plant Directive considerably tightens the specifications for flue gas cleaning by 2015. But for many older power plants it is not profitable to invest in the modernisation of the flue gas cleaning. Consequently, many of these plants will be replaced as well.

In light of this development, ecoprog GmbH has analysed the European market for coal power plants in detail. This study includes our own market knowledge as well as the expertise of public administrations, business associations, operators and companies in the segment of plant construction.

The study “The Market for Coal Power Plants in Europe” includes:

- A detailed analysis of the essential political, economic, managerial and technological trends in the segments of constructing and operating coal power plants.
- A precise description of the present and the future market volumes by countries, up to and including 2020, based on a transparent and comprehensible methodology.
- A presentation of about 330 coal power plants with a total capacity of about 205 GW, including essential technological data and contact addresses.
- A list of projects with more than 100 coal power plant units, more than 30 of which are already under construction and more than 70 are currently being planned or discussed. They represent a total installed capacity of over 70 GW.
- An analysis and description of the competition with the most important operators and plant manufacturers of coal power plants in Europe.

The study is available in German and English from 2,900,- euros plus VAT.

Contact:

Marcel Siebertz
ecoprog GmbH
Tel. +49 221 788 03 88 - 14
m.siebertz@ecoprog.com
Content

Preface
12

Management summary
13

1 Background
17

1.1 Differentiation
17

1.2 Reasons for incinerating coal
23

1.3 Resistance to incinerating coal
24

2 Technology
25

2.1 Delivery and processing of the coal
26

2.2 Combustion
29

2.3 Energy generation
32

2.4 Flue gas cleaning
33

2.5 Recent technological developments
34

2.6 Residues of energy generation from coal
35

3 Costs and revenues of coal power plants
37

3.1 Investment costs
37

3.2 Operating costs
38

3.3 Revenues
39

4 Market factors
41

4.1 Large geological potential
41

4.2 Expiring subsidies harm plant market
44

4.3 EU greenhouse gas reduction: a turning point for electricity generation from coal
45

4.4 New fuel: co-incinerating biomass
52

4.5 CCS: market chance for the future
53

4.6 Coal price as an efficiency factor of a coal-fired power plant
56

4.7 Replacement needs of power plants: old plants and nuclear phase-out
58

4.8 Retrofitting measures for existing plants
61
5 The market for coal power plants in Europe 63
 5.1 Current plants 63
 5.2 Market development 69

6 Operators, manufacturers, market shares 75
 6.1 Operators of coal-fired power plants 75
 6.2 Technological providers and market shares 76

7 National markets 81
 7.1 Austria 85 7.17 Lithuania 210
 7.2 Belgium 91 7.18 Luxembourg 213
 7.3 Bulgaria 97 7.19 Malta 215
 7.4 Cyprus 105 7.20 Netherlands 218
 7.5 Czech Republic 107 7.21 Norway 225
 7.6 Denmark 122 7.22 Poland 228
 7.7 Estonia 130 7.23 Portugal 256
 7.8 Finland 132 7.24 Romania 261
 7.9 France 140 7.25 Slovakia 270
 7.10 Germany 149 7.26 Slovenia 279
 7.11 Greece 178 7.27 Spain 284
 7.12 Hungary 186 7.28 Sweden 294
 7.13 Iceland 192 7.29 Switzerland 298
 7.14 Ireland 194 7.30 Turkey 302
 7.15 Italy 197 7.31 United Kingdom 313
 7.16 Latvia 206

8 Data sources and methodology 327

9 Glossary 329

10 List of projects 331

11 Register of plants 339
Table of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Coal power plants in the electricity industry</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>Exemplary use of coal power plants in the course of a day</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>Analysed area</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>Fuels by average calorific value and density</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>Simplified illustration of carbonisation</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>Advanced classification of types of coal</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>Classification of coal in this analysis</td>
<td>23</td>
</tr>
<tr>
<td>8</td>
<td>CO₂ emissions of power plants</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>Schematic illustration of a coal power plant</td>
<td>28</td>
</tr>
<tr>
<td>10</td>
<td>Schema of a dust firing</td>
<td>29</td>
</tr>
<tr>
<td>11</td>
<td>Schema of a fluidised bed combustion</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>Schema of a grate firing</td>
<td>31</td>
</tr>
<tr>
<td>13</td>
<td>Shares of power plant investments</td>
<td>36</td>
</tr>
<tr>
<td>14</td>
<td>Capital costs of coal power plants</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>CCS projects in Europe</td>
<td>55</td>
</tr>
<tr>
<td>28</td>
<td>Comparison of prices of fossil energy sources</td>
<td>56</td>
</tr>
<tr>
<td>29</td>
<td>International comparison of development of prices of bituminous coal</td>
<td>57</td>
</tr>
<tr>
<td>30</td>
<td>Age of coal and gas power plants in Europe</td>
<td>59</td>
</tr>
<tr>
<td>31</td>
<td>Nuclear power shares of electricity generation in Europe</td>
<td>60</td>
</tr>
<tr>
<td>32</td>
<td>Existing plants in Europe by regions</td>
<td>62</td>
</tr>
<tr>
<td>33</td>
<td>Importance of coal at total electricity generation</td>
<td>63</td>
</tr>
<tr>
<td>34</td>
<td>Electricity generation of EU 27 states by different types of coal</td>
<td>64</td>
</tr>
<tr>
<td>35</td>
<td>Existing coal power plants in Eastern Europe</td>
<td>65</td>
</tr>
<tr>
<td>36</td>
<td>Existing coal power plants in Germany, Austria and Switzerland</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>New installed capacity in the United Kingdom and Ireland 2012-2020</td>
<td>75</td>
</tr>
<tr>
<td>46</td>
<td>New installed capacity in France and Benelux 2012-2020</td>
<td>76</td>
</tr>
<tr>
<td>47</td>
<td>New installed capacity in Turkey 2012-2020</td>
<td>76</td>
</tr>
<tr>
<td>48</td>
<td>New installed capacity in Scandinavia 2012-2020</td>
<td>77</td>
</tr>
<tr>
<td>49</td>
<td>Estimation of market shares of the largest coal power plant operators in Europe</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>Electricity generation by energy sources in the United Kingdom</td>
<td>312</td>
</tr>
<tr>
<td>152</td>
<td>Allocation of certificates in the United Kingdom</td>
<td>312</td>
</tr>
<tr>
<td>153</td>
<td>Gross electricity generation from coal in the United Kingdom</td>
<td>313</td>
</tr>
<tr>
<td>154</td>
<td>The three largest coal power plants in the United Kingdom</td>
<td>314</td>
</tr>
<tr>
<td>155</td>
<td>Project outlook United Kingdom</td>
<td>315</td>
</tr>
<tr>
<td>156</td>
<td>Market forecast United Kingdom</td>
<td>315</td>
</tr>
</tbody>
</table>
4.6 Coal price as an efficiency factor of a coal-fired power plant

Coal is comparatively less expensive in contrast to other fossil fuels. Costs for coal are especially low in comparison with costs for natural gas, which is also increasingly used for electricity generation.

Compared to natural gas, coal is mainly less expensive because its transportation is considerably cheaper. For transporting natural gas, kilometres of pipelines have to be constructed or the gas’ aggregate phase has to be modified several times in the course of the transport. Furthermore, in the ideal case of opencast mining, producing coal is also less expensive than producing gas. Crude oil is also considerably more expensive than coal. Producing crude oil and its transportation entail high costs, however, the larger demand is also an issue as crude oil is used as a fuel and in the chemical industry as well.

Figure 28: Comparison of prices of fossil energy sources (2011)

As a result, fuel costs in a coal-fired power plant only amount to about 20 to 40 per cent of the total operating costs – in gas-fired power plants, the fuel costs add up to about 70 per cent. Correspondingly, the development of the coal price is not as important for the coal power plant operator as is the development of the gas price for the gas power plant operator.

Something like a market price only exists for hard coal anyway. Brown coal is not traded. Transporting brown coal is not profitable as its energy content is lower (at equal mass). This is why brown coal power plants are located directly at or very close to the production. In most cases, one company does both: producing coal and generating electricity from it.

Most European plants that still incinerate hard coal also originally used domestic coal close to the facilities. However, transporting hard coal has become more profitable as transportation costs decreased further (for instance caused by ever larger ships).

[...]

The Market for Coal Power Plants in Europe
© ecoprog GmbH, www.ecoprog.com
7.15 Italy

<table>
<thead>
<tr>
<th>Inhabitants [m]</th>
<th>Number of coal power plants</th>
<th>Installed electrical capacity [MWel]</th>
<th>Age of units (initial commissioning)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.1</td>
<td>15</td>
<td>11,678</td>
<td>31</td>
</tr>
</tbody>
</table>

Kyoto value as of 2009 [%] = -2
Kyoto target value 2012 [%] = -6

Management summary

Italy imports more electricity than any other European country. In the future, the domestically produced amount of electricity is also supposed to be increased by using coal. Additionally, old oil-fired power plants will be replaced by gas and coal power plants. Few plants have to be shut down due to their old age. In the years to come, coal power in Italy will – contrary to the situation in most other European states – remain on the same level or even increase slightly.

Coal production

Only very small amounts of coal are produced in Italy. Production in 2010 amounted to 0.4 Mt. Deposits from which coal is produced exist only in South Sardinia. Coal reserves are reported to amount to 10 Mt; coal resources are reported to amount to 600 Mt.

In 2010, Italy imported 22.7 Mt of hard coal. Hence, 98 per cent of the coal used in Italy is imported. It mainly comes from Indonesia, South Africa, Australia and Colombia. About 70 per cent of the imported coal is used in the energy industry.

Background / market factors / legal framework

In Italy, there are only small deposits of raw materials that can be used energetically (coal and gas). Thus, about 80 per cent of the energy sources have to be imported.

The share of electricity generation from coal amounts to about 15 per cent in Italy. Natural gas accounts for the largest share of electricity generation, renewable energies (mainly in the form of water power) rank second. Furthermore, compared to the situation in other European states, oil plays an important role for electricity generation. Nuclear power has lost its importance after the nuclear power plants were shut down in the 1990s.

Since the 1980s, Italy has become dependent on importing electricity, with tendency to increase further. The country imports about 15 per cent of the electricity and thus is among the world's largest net electricity importers. This is due to the loss of nuclear energy and the increasing energy demand of the last decades. Additionally, some thermal power plants (especially oil-fired power plants) were shut down due to their old age.

In order to reduce electricity imports, Italy has over the past years mainly focused on expanding gas-fired power plants and constructing coal power plant units.

[...]
However, the targeted emission reductions cannot be reached by expanding coal and gas power plants. It is currently being discussed to further expand renewable energies as well as, according to government circles, to introduce an obligatory quota for the co-incineration of biomass in coal power plants.

Figure 100: Market forecast Netherlands

The operators also favoured a co-incineration of biomass in new construction projects. However, it is unclear whether they will continue to do so in the future, as according to the new SDE subsidisation of co-incineration will expire. Emission savings or achieving the planned obligatory quota are possible reasons to keep favouring co-incineration.

Figure 101: Project outlook Netherlands

<table>
<thead>
<tr>
<th>Plant</th>
<th>Type of investment</th>
<th>Capacity [MWel]</th>
<th>Fuel</th>
<th>Commissioning</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eemshaven B Block 1</td>
<td>NC</td>
<td>400</td>
<td>BIT</td>
<td>2012</td>
<td>UC</td>
</tr>
<tr>
<td>Eemshaven B Block 2</td>
<td>NC</td>
<td>400</td>
<td>BIT</td>
<td>2012</td>
<td>UC</td>
</tr>
<tr>
<td>Eemshaven B Block 3</td>
<td>NC</td>
<td>400</td>
<td>BIT</td>
<td>2012</td>
<td>UC</td>
</tr>
<tr>
<td>Rotterdam A Maasvlakte 3</td>
<td>NC</td>
<td>1,100</td>
<td>BIT</td>
<td>2012</td>
<td>UC</td>
</tr>
<tr>
<td>Rotterdam B Maasvlakte A</td>
<td>NC</td>
<td>800</td>
<td>BIT</td>
<td>2013</td>
<td>UC</td>
</tr>
<tr>
<td>Eemshaven A Block 1</td>
<td>NC</td>
<td>800</td>
<td>BIT</td>
<td>2013</td>
<td>UC</td>
</tr>
<tr>
<td>Eemshaven A Block 2</td>
<td>NC</td>
<td>800</td>
<td>BIT</td>
<td>2013</td>
<td>UC</td>
</tr>
<tr>
<td>Geertruidenberg Amer 10</td>
<td>NC</td>
<td>800</td>
<td>BIT</td>
<td>n/a</td>
<td>UC</td>
</tr>
</tbody>
</table>

NC = new construction, UC = under construction, BIT = bituminous coal

[...]
Competition

Corresponding to the market-based and open market structure of the United Kingdom, many internationally active companies are among the operators and plant manufacturers. Internationally active energy companies such as RWE, E.ON and EDF Energy operate most plants. However, national energy producers such as Drax Group or Scottish and Southern Energy plc also operate facilities in the United Kingdom.

Babcock Power is the market leader in terms of boiler technology, Alstom and Foster Wheeler rank second and third. The turbines and generators in the existing plants were constructed by companies that are now – after take-overs – integrated into the corporations Alstom and Siemens.

Coal power plants in the United Kingdom

Aberthaw B

RWE N Power
Windmill Hill Business Park
Whitehill Way
SN5 6PB Swindon
Tel.: 0044 1793 877 777

- **Status:** active
- **Start of operation:** 1970
- **Power Production Capacity (MWel):** 1,500
- **Total Capacity (t/a):** 1,800,000

Remarks: Aberthaw burns approximately 5000 – 6000 tonnes of coal a day, contributing 6-7 TWh per year. According to RWE the company invested over GBP 9.5 million at Aberthaw to enable co-firing biomass. Biomass replaces 55 MW of electricity.

Unit 1

- **Status:** active
- **Start of operation:** 1970
- **Power Production Capacity (MWel):** 500
- **Primary fuel:** bituminous coal
- **Additional fuel:** sawdust
- **Manufacturer Boiler:** Foster Wheeler, John Brown Engineering
- **Manufacturer Turbine:** AEI
- **Manufacturer Generator:** AEI

Unit 2

- **Status:** active
- **Start of operation:** 1970
- **Power Production Capacity (MWel):** 500
- **Primary fuel:** bituminous coal
- **Additional fuel:** sawdust
- **Manufacturer Boiler:** Foster Wheeler, John Brown Engineering
- **Manufacturer Turbine:** AEI
- **Manufacturer Generator:** AEI

Blyth

Blyth
RWE N Power
Windmill Hill Business Park
Whitehill Way
SN5 6PB Swindon
Tel.: 0044 1793 877 777

- **Status:** discussed
- **Start of operation:** 2014
- **Power Production Capacity (MWel):** 2,400

Unit 1

- **Status:** discussed
- **Start of operation:** 2014
- **Power Production Capacity (MWel):** 800
- **Primary fuel:** bituminous coal
- **Additional fuel:** biomass

[...]
Coal power plants in the Czech Republic

Ledvice 1

Other name: Teplice
ČEZ AS
Duhová 2 / 1444
0 Praha 4
Tel.: +420 211 041 111
Fax: +420 211 042 001
cez@cez.cz
www.cez.cz

Status: active
Start of operation: 1966
Power Production Capacity (MWel): 220

Ledvice 1 a

Status: active
Start of operation: 1966
Power Production Capacity (MWel): 110
Heat Production Capacity (MWth): 170
Primary fuel: lignite
Manufacturer Boiler: Vitkovice
Manufacturer Turbine: Skoda
Manufacturer Generator: Skoda

Remarks: With commissioning of the new unit in 2012 this unit will be shut down.

Ledvice 1 b

Status: active
Start of operation: 1968
Power Production Capacity (MWel): 110
Heat Production Capacity (MWth): 170
Primary fuel: lignite
Manufacturer Boiler: Vitkovice
Manufacturer Turbine: Skoda
Manufacturer Generator: Skoda

Remarks: With commissioning of the new unit in 2012 this unit will be shut down.

Ledvice 2

Other name: Teplice
ČEZ AS
Duhová 2 / 1444
0 Praha 4
Tel.: +420 211 041 111
Fax: +420 211 042 001
cez@cez.cz
www.cez.cz

Status: active
Start of operation: 1969
Power Production Capacity (MWel): 110
Heat Production Capacity (MWth): 44
Primary fuel: lignite
Manufacturer Boiler: ABB
Boiler Type: CFB
Manufacturer Turbine: Skoda
Manufacturer Generator: Skoda

Ledvice 3

Other name: Teplice
ČEZ AS
Duhová 2 / 1444
0 Praha 4
Tel.: +420 211 041 111
Fax: +420 211 042 001
cez@cez.cz
www.cez.cz

Status: under construction
Power Production Capacity (MWel): 660

Ledvice 3 a

Status: under construction
Start of operation: 2012
Power Production Capacity (MWel): 660
Primary fuel: lignite
Manufacturer Boiler: Alstom-Brno
Boiler Type: PCF
Manufacturer Flue Gas Cleaning: Hitachi

Remarks: This unit is currently under construction. Commissioning is scheduled for December 2012. It will replace Unit 2 and 3. Unit 4 will stay in operation.

Litvinov

Other name: T700 Chemopetrol
Chemopetrol
Trojská 13a
0 Praha 8
Tel.: +420-2-90048363
Fax: +420-2-8573769
kuliha@chemopetrol.cz

[...]
Register of plants

<table>
<thead>
<tr>
<th>Location</th>
<th>Code</th>
<th>Location</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aabenraa</td>
<td>126</td>
<td>Bobov Dol</td>
<td>101</td>
</tr>
<tr>
<td>Aalborg</td>
<td>126</td>
<td>Bogatynia</td>
<td>236</td>
</tr>
<tr>
<td>Aberthaw B</td>
<td>318</td>
<td>Borssele</td>
<td>222</td>
</tr>
<tr>
<td>Abono</td>
<td>288</td>
<td>Bouchain</td>
<td>143</td>
</tr>
<tr>
<td>Afsin Elbistan A</td>
<td>306</td>
<td>Boxburg</td>
<td>157</td>
</tr>
<tr>
<td>Afsin Elbistan B</td>
<td>306</td>
<td>Brașov</td>
<td>265</td>
</tr>
<tr>
<td>Agios Nikolaos</td>
<td>182</td>
<td>Braunschweig</td>
<td>158</td>
</tr>
<tr>
<td>Agiou Dimitriou</td>
<td>182</td>
<td>Bremen-Farge</td>
<td>158</td>
</tr>
<tr>
<td>Alibruck</td>
<td>154</td>
<td>Bremen-Hastedt</td>
<td>158</td>
</tr>
<tr>
<td>Alcúdia</td>
<td>288</td>
<td>Brescia</td>
<td>201</td>
</tr>
<tr>
<td>Aliaga</td>
<td>307</td>
<td>Brindisi Nord</td>
<td>201</td>
</tr>
<tr>
<td>Aliveri</td>
<td>182</td>
<td>Brindisi Sud 1</td>
<td>201</td>
</tr>
<tr>
<td>Altbach</td>
<td>154</td>
<td>Brindisi Sud 2</td>
<td>202</td>
</tr>
<tr>
<td>Altbach 2</td>
<td>155</td>
<td>Brunsbüttel</td>
<td>158</td>
</tr>
<tr>
<td>Amasra</td>
<td>307</td>
<td>Budapest</td>
<td>189</td>
</tr>
<tr>
<td>Amintaiou Florinas</td>
<td>182</td>
<td>Buggenum</td>
<td>222</td>
</tr>
<tr>
<td>Amsterdam</td>
<td>222</td>
<td>Bursa</td>
<td>307</td>
</tr>
<tr>
<td>Anifares</td>
<td>288</td>
<td>Büttel</td>
<td>159</td>
</tr>
<tr>
<td>Antwerp</td>
<td>94</td>
<td>Bydgoszcz</td>
<td>237</td>
</tr>
<tr>
<td>Arneburg</td>
<td>155</td>
<td>Bytom 1</td>
<td>237</td>
</tr>
<tr>
<td>As Pontes</td>
<td>288</td>
<td>Bytom 2</td>
<td>237</td>
</tr>
<tr>
<td>Astakos</td>
<td>182</td>
<td>Can</td>
<td>307</td>
</tr>
<tr>
<td>Bacău</td>
<td>264</td>
<td>Catalagzi B</td>
<td>307</td>
</tr>
<tr>
<td>Bedzin</td>
<td>233</td>
<td>Cayirhan</td>
<td>308</td>
</tr>
<tr>
<td>Belchatow</td>
<td>234</td>
<td>Cercs</td>
<td>289</td>
</tr>
<tr>
<td>Bergheim</td>
<td>155</td>
<td>Champagne-sur-Oise</td>
<td>143</td>
</tr>
<tr>
<td>Bergheim 2</td>
<td>156</td>
<td>Chemnitz</td>
<td>159</td>
</tr>
<tr>
<td>Bergkamen</td>
<td>156</td>
<td>Chvaletice</td>
<td>111</td>
</tr>
<tr>
<td>Berlin</td>
<td>156</td>
<td>Civitavecchia</td>
<td>202</td>
</tr>
<tr>
<td>Berlin 2</td>
<td>156</td>
<td>Cockenzie</td>
<td>319</td>
</tr>
<tr>
<td>Bexbach</td>
<td>157</td>
<td>Compostilla</td>
<td>289</td>
</tr>
<tr>
<td>Blałołęka</td>
<td>235</td>
<td>Cordemais</td>
<td>143</td>
</tr>
<tr>
<td>Bialystok</td>
<td>235</td>
<td>Cottam</td>
<td>319</td>
</tr>
<tr>
<td>Bielefeld</td>
<td>157</td>
<td>Courrieres</td>
<td>144</td>
</tr>
<tr>
<td>Biga</td>
<td>307</td>
<td>Craiova</td>
<td>265</td>
</tr>
<tr>
<td>Blachownia</td>
<td>235</td>
<td>Czechowice-Dziedzice</td>
<td>238</td>
</tr>
<tr>
<td>Blénod</td>
<td>143</td>
<td>Czestochowa</td>
<td>238</td>
</tr>
<tr>
<td>Blyth</td>
<td>319</td>
<td>[...]</td>
<td></td>
</tr>
</tbody>
</table>
Order form

Please send to ecoprog, fax: +49 221 788 03 88 10, a.engberg@ecoprog.com

I would like to order the study “The Market for Coal Power Plants in Europe”

Language: ☐ German ☐ English

☐ Single user copy, 2,900,- EUR plus VAT
☐ Company version, 5,800,- EUR plus VAT
☐ Corporate version, POA

Explanation:
Single user copy: personal copy (personalised and password-protected PDF file, sent via e-mail). Company version: company-wide copy (legal entity), sent via email. Corporate version: for different, legally connected companies (e.g. sister companies, subsidiaries abroad). Price depends on number of companies and employees.

☐ Additionally, I would like to order ___ copies of the study on paper (hardcover book).
Price: 150,- EUR per book plus delivery charges

Company	Contact person (title / first name / last name)
Street, PO Box | Telephone, Fax
Post code, City | E-mail
VAT identification number | Date, Signature

Other invoicing number or address, if wanted

The order is subject to the general terms of business of ecoprog GmbH.
You can pay with credit card. Please contact us if you are interested.

I agree to obtain information on further studies by ecoprog via e-mail in the future. ☐ yes ☐ no

ecoprog GmbH ● Krefelder Str. 18 ● 50670 Köln / Cologne ● Germany ● Tel. +49 221 788 03 88 0 ● Fax +49 221 788 03 88 10 ● Bank: Sparkasse KölnBonn ● Swift/BIC-Code: COLSDE33 ● IBAN DE96 3705 0198 1900 209287 ● Local court Cologne, # HRB 56660 ● VAT ID DE814576618