The Market for Mechanical Biological Waste Treatment in Europe
Locations, plants, backgrounds and market estimations

2nd edition, May 2017
The business with mechanical biological waste treatment plants (MBT plants) continues to be a strong market. In the past 5 years, an average of about 25 new MBT plants were constructed annually in Europe. In this way, an average of about 2.2 million annual tons were commissioned each year.

In early 2017, Europe has a total of about 570 active MBT plants with a treatment capacity of 55 million tons. ecoprog expects another 120 facilities with an estimated capacity of almost 10 million annual tons to be commissioned between 2017 and 2025. Thus the market situation will continue to be strong in the coming years, although the speed of construction will decrease somewhat.

In many countries, the modernisation of existing plants will replace the new construction business. One reason for this is the production of RDF, which is increasingly pushed to reduce the landfilling fraction of the MBT plants. The altered composition of residual waste as a result of a stronger separate collection also requires investments in existing plants.

Against this backdrop, ecoprog has analysed the existing European MBT plants and forecast the future market development by using a transparent methodology.

The study "The Market for Mechanical Biological Waste Treatment in Europe" includes:

- The description and analysis of 520 MBT plants and 200 projects in Europe by site, including technical data and contact addresses.
- A valid estimation of the future market development by country, based on a transparent methodology.
- A competition analysis of the most important MBT plant operators on the European market.
- An overview of the most important plant technology as well as costs and revenues on the MBT market.
- A comprehensive explanation and analysis of the European legal framework.

The study is available in German and English from 3,400,- € plus VAT.

Contact:
Janne Heumer
ecoprog GmbH
Tel. +49 221 788 03 88 13
j.heumer@ecoprog.com
Preface 11
Management summary 12
1 Differentiation 16
 1.1 Term 16
 1.2 Waste input, differentiation from other sorting plants 16
 1.3 Geographical differentiation 18
2 Plant technology 19
 2.1 Purpose 19
 2.2 Influencing factors 20
 2.3 Basic structure 24
 2.4 Waste delivery, initial storage 25
 2.5 Shredding 26
 2.6 Sorting 28
 2.7 Biological treatment 30
 2.8 Flue gas cleaning 33
 2.9 Other support processes 33
3 Costs and revenues 36
 3.1 Investment costs 39
 3.2 Operational costs 41
 3.3 Revenues 44
4 Legal framework and market factors 46
 4.1 EU waste policies 46
 4.2 RDF demand 57
 4.3 MBT vs. waste incineration 59
 4.4 Biogas subsidisation 64
 4.5 Other market factors 66
5 Plants and market 67
 5.1 Plants 67
 5.2 Market 71
6 Competition 75
 6.1 Operators 75
 6.2 Technology providers 76
7 National markets and sites 88
 7.1 Belgium 88
 7.2 Bulgaria 92
 7.3 Denmark 97
 7.4 Germany 100
 7.5 Estonia 114
 7.6 Finland 119
 7.7 France 124
 7.8 Greece 142
 7.9 Iceland 155
 7.10 Italy 158
 7.11 Croatia 180
 7.12 Latvia 187
 7.13 Lithuania 194
 7.14 Luxembourg 201
 7.15 Malta 204
 7.16 Netherlands 208
 7.17 Norway 214
 7.18 Austria 220
 7.19 Poland 227
 7.20 Portugal 265
 7.21 Romania 273
 7.22 Sweden 281
 7.23 Switzerland 284
 7.24 Slovakia 287
 7.25 Slovenia 290
 7.26 Spain 296
 7.27 UK 320
 7.28 Czech Republic 307
 7.29 Hungary 311
 7.30 Cyprus 335
Glossary 341
Methodology / data 342

The Market for Mechanical Biological Waste Treatment in Europe
© ecoprog GmbH, www.ecoprog.com
Annex A: List of projects 343
Annex B: Data for market forecast 353
Figure 1: Analysed topic in the ecoprog waste matrix
Figure 2: Geographical differentiation of the analysed markets
Figure 3: Higher-level material flow in an MBT plant
Figure 4: Input and treatment effort
Figure 5: Output and treatment effort
Figure 6: Processing efforts for plastics (secondary raw material)
Figure 7: Processing efforts for refuse-derived fuel
Figure 8: Output and treatment effort
Figure 9: Decomposing composite material through shredding
Figure 10: Selected technologies for reducing the size of waste pieces
Figure 11: Technologies for separating waste
Figure 12: Exemplary MBT plant
Figure 13: Examples for investment sums for new construction projects*
Figure 14: Overview investment sum
Figure 15: Components of operational costs
Figure 16: Operational costs of mechanical processing (without disposal and transportation costs)
Figure 17: Market factors for MBT plants
Figure 18: Adoption and implementation of EU Landfill Directive
Figure 19: Shares of type of MSW treatment in the EU, by country
Figure 20: Deadlines of the Landfill Directive and reductions for reaching the third deadline
Figure 21: Reduction of landfilled biodegradable waste by third deadline
Figure 22: Measures for limiting landfilling in the EEA
Figure 23: Adoption and implementation of EU Landfill Directive
Figure 24: Waste hierarchy (EU Waste Framework Directive)
Figure 25: Adoption and implementation of IPPC Directive
Figure 26: Targets by 2030 of planned Circular Economy Package
Figure 27: Calorific value of selected fuels
Figure 28: Coal and oil prices in Europe 1995-2015
Figure 29: MBT vs. waste incineration
Figure 30: Transportation routes to a treatment plant in a rural location
Figure 31: Space needed by 1 Mg of MWS
Figure 32: Plants in Europe, n=570
Figure 33: MBT capacities in Europe, n=54.9 million Mg/a
Figure 34: Average plant size by region
Figure 35: Type of biological treatment, n=373
Figure 36: MBT capacities per capita
Figure 37: Development of MBT capacities and plants in Europe by 2025
Figure 38: Annual new construction and additionally installed treatment capacities
Figure 39: Expected construction of new MBT capacities between 2017 and 2025 in 1,000 Mg/a
Figure 40: MBT plant operators in Europe
Figure 41: MSW treatment in Belgium 2004-2014
Figure 42: Plants and projects in Belgium
Figure 43: MSW treatment in Bulgaria 2004-2014
Figure 44: Market forecast Bulgaria
Figure 45: Plants and projects in Bulgaria
Figure 46: MSW treatment in Denmark 2004-2014
Figure 47: MSW treatment in Germany 2004-2014
Figure 48: Market forecast Germany
Figure 49: Plants and projects in Germany
Figure 50: Feed-in tariff in the UK 2016-2019
Figure 51: Market forecast UK
Figure 52: Project outlook UK
Figure 53: Plants and projects in the UK
Figure 54: MSW treatment in Cyprus 2004-2014
Figure 55: Market forecast Cyprus
Figure 56: Project outlook Cyprus
Figure 57: Plants and projects in Cyprus
Different plant outputs also need different technology. Which kind of technology is applied, depends on the type of the customer and also on its own technology:

- The quality of the sorted recyclables, e.g. plastic or paper, differs by customer. Many of such customers are specialised sorting plants that “refine” the plastic, e.g. to mono-fraction granulate, by processing it through further sorting stages. Depending on the equipment of the sorting plants, their input material (i.e. an MBT plant’s output) requirements vary as well. Demands are usually higher for paper that is delivered to a paper mill directly, as many paper mills only have small capacities for installing further sorting and cleaning processes.

- The RDF the MBT plants produce is incinerated in different types of power plants, e.g. in waste incinerators, RDF power plants (power plants especially designed for these refuse-derived fuels), cement mills and coal-fired power plants. The requirements of these plants vary significantly. Co-incinerators usually make high demands on the RDF as this may not significantly affect their primary business purpose, for instance the production of cement. Waste incineration plants can often handle material that has only undergone minor pretreatment, after all, they generally incinerated unsorted waste. Waste incinerators therefore make considerably lower demands, however, this also holds true for the prices. The grain size of the RDF does not play a major role for an RDF power plant equipped with grate combustion technology; however, when fluidised bed incineration is applied, the individual RDF particles are blown in and may therefore not exceed a specific maximum size.

- The specifications of the individual countries even differ for landfilling, e.g. in terms of technology or referring to individual limit values, such as the carbon share (TOC).

Figure 6: Processing efforts for plastics (secondary raw material)

<table>
<thead>
<tr>
<th>Purity</th>
<th>Sorting stage</th>
<th>Homogeneity</th>
</tr>
</thead>
<tbody>
<tr>
<td>High proportion of pollutants</td>
<td>High proportion of pollutants</td>
<td>Homogeneous sorting, e.g. PET</td>
</tr>
<tr>
<td>Different plastic varieties</td>
<td>Flakes</td>
<td>Low proportion of pollutants</td>
</tr>
<tr>
<td>Bale</td>
<td>Granules</td>
<td></td>
</tr>
</tbody>
</table>

Source: ecoprog

The probably largest economic advantage of MBT plants is their small size and therefore their logistical advantages, especially in rural areas.

Due to expensive incineration technology and flue gas cleaning, a waste incineration plant needs minimum amounts of waste in order to run cost-efficiently. In rural areas especially, this may result in a very large catchment area and high transportation costs.

Depending on the location and the settlement structure, this effort may be reduced by installing several smaller MBT plants. They do not only reduce the waste’s weight (due to the loss of moisture), but also make it easier to transport, thanks to smaller grain sizes and a decreased reactivity. When there are recycling centres or landfill sites located more favourably towards an MBT plant, this may save additional transportation costs.

The RDF that is produced in such an MBT plant, may subsequently be incinerated in a central RDF power plant, then entailing lower transportation costs.

Figure 30: Transportation routes to a treatment plant in a rural location

Catchment area of a waste incineration plant vs. catchment area of 3 MBT plants

Illustration: ecoprog

The specific volume limits of waste incinerators and MBT plants depend on the waste, a plant’s location – and are very controversial.
7.5 Estonia

<table>
<thead>
<tr>
<th>Inhabitants (million)</th>
<th>1.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of MBT plants</td>
<td>3</td>
</tr>
<tr>
<td>Municipal solid waste 2014 (1,000 Mg)</td>
<td>470</td>
</tr>
<tr>
<td>Treatment capacities (1,000 Mg/a)</td>
<td>265</td>
</tr>
<tr>
<td>MBT capacity share of overall waste (%)</td>
<td>56</td>
</tr>
<tr>
<td>Average plant age</td>
<td>6</td>
</tr>
</tbody>
</table>

Management summary

Ever since the waste incineration plant in Tallinn was commissioned in 2013, Estonia has residual waste treatment overcapacities. We do therefore not expect any new MBT plants to be constructed by 2025.

Background/legal framework

Until the mid of the decade, most of the provided funds for the Estonian waste disposal sector was spent for landfilling. Hundreds of landfills, most of them small and of lower standard, have been closed since the mid-1990s. Instead, 5 central landfill sites were built, complying with EU regulations.

Like most other Eastern European states, Estonia was also granted transitional periods for implementing the EU Landfill Directive. Until 2010, the amount of landfilled biodegradable waste should have been reduced by 35% in comparison to the 1995 amount and it has to decline by 75% by 2020.

Figure 1: MSW treatment in Estonia 2004-2014

The MSW amount in Estonia decreased by about 40% between 2007 and 2012, down to 334,000 tons and mainly because of the European financial and economic crisis as well as the adjustment of the national towards EU law. […]
Landfill tax/landfill ban

When introducing the EU Landfill Directive in 2005, the country also established a landfill ban for 64 different waste streams.

Since 2000, the Netherlands differentiates between a “high” tax for landfilling waste that would be suitable to go to thermal recovery and a “low” tax for landfilling waste with a density of over 1,100 kg/m³, as this waste is then classified as not being suitable for thermal recovery. The low tax currently amounts to 17 EUR and the high tax is over 100 EUR.

Incineration tax

In January 2015, a tax amounting to 13 EUR per ton was introduced for the thermal recovery of MSW. However, this tax only has to be paid for national waste and not for waste imports.

RE legislation

Renewable energies are currently subsidised through the SDE+ programme (Stimulerings Duurzame Energie, English: “Stimulating Sustainable Energy”). In 2016, the volume of the programme amounts to 8 billion EUR. Since the same year, subsidies may be applied for in two phases. A biogas plant that secured subsidies will receive them for 15 years.

Figure 97: Feed-in tariff in the Netherlands (phase 1/2016)

<table>
<thead>
<tr>
<th>Plant</th>
<th>Basic price (EURct/kWh)</th>
<th>Correction price (EURct/kWh)</th>
<th>Actual subsidy (EURct/kWh)</th>
<th>Projects handed in from</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New plants</td>
<td>6.0</td>
<td>3.1</td>
<td>2.9</td>
<td>1 March 2016</td>
</tr>
<tr>
<td>Existing plants</td>
<td>5.6</td>
<td>1.7</td>
<td>3.9</td>
<td>1 March 2016</td>
</tr>
<tr>
<td>Electricity (CHP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New plants</td>
<td>8.7</td>
<td>3.2</td>
<td>5.5</td>
<td>1 March 2016</td>
</tr>
<tr>
<td>Existing plants</td>
<td>8.6</td>
<td>3.3</td>
<td>5.3</td>
<td>1 March 2016</td>
</tr>
<tr>
<td>Processing into biomethane</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New plants</td>
<td>6.0</td>
<td>2.2</td>
<td>3.8</td>
<td>1 March 2016</td>
</tr>
<tr>
<td>Existing plants</td>
<td>5.9</td>
<td>2.2</td>
<td>3.7</td>
<td>1 March 2016</td>
</tr>
</tbody>
</table>

Source: Dutch Ministry of Economic Affairs, 2016

Contrary to the subsidisation schemes in other countries, SDE+ defines a basic price that does not depend on the technology used and a correction price. The government redetermines both prices each year. The correction price is approximately the electricity market price. The actual feed-in tariff is the difference between basic price and correction price.

[…]

Extract, Chapter 7, National markets and sites, Netherlands
Market development

Even though Norway has sufficient thermal treatment capacities, further plants will be realised for the mechanical treatment of residual waste. After the plant in Skedsmo was commissioned in 2014, another facility will soon be completed in Stavanger. Start of operations had initially been planned for 2016. The plant will sort out the plastic fraction from residual waste and process it into plastic flakes.

Figure 102: Market forecast Norway

In our forecast, we assume that some similar projects might be implemented in larger cities. However, the low utilisation of the active plant shows that these capacities will not be needed. Norway is a rich country with advanced waste treatment infrastructure. We therefore expect that the aforementioned projects will rather be pilot plants for alternative types of residual waste treatment, which the cities will finance through gate fees. In this case, high utilisation will not be necessarily needed for cost-efficient operations.

Figure 103: Project outlook Norway

<table>
<thead>
<tr>
<th>Plant</th>
<th>Country</th>
<th>Biological Treatment</th>
<th>Capacity [tpy]</th>
<th>Start of operation</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stavanger</td>
<td>Norway</td>
<td>no biological</td>
<td>100,000</td>
<td>2017</td>
<td>under construction</td>
</tr>
</tbody>
</table>

[...]
Plants and projects in Portugal

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Barcelos</td>
<td>active</td>
<td>RESULIMA</td>
<td>Vila Nova de Anha</td>
<td>+351 258 350 330</td>
<td>www.resulima.pt</td>
<td>2011</td>
<td>12,000</td>
<td>n.a.</td>
<td>10,917</td>
<td>The conversion of the facility from a mechanical treatment plant to a MBT is discussed. The capacity could then rise to 110,000 Mg/a.</td>
</tr>
<tr>
<td>Beja</td>
<td>active</td>
<td>RESIALENTEJO</td>
<td>Beja</td>
<td>+351 284 311220</td>
<td>www.resialentejo.pt</td>
<td>2015</td>
<td>30,000</td>
<td>n.a.</td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td>Chamusca</td>
<td>active</td>
<td>RESIESTRELA, Valorização e Tratamento de Resíduos Sólidos, S.A.</td>
<td>Carregueira</td>
<td>+351 249 749 010</td>
<td>www.resitejo.pt</td>
<td>2001</td>
<td>31,545</td>
<td>n.a.</td>
<td>8,207</td>
<td></td>
</tr>
<tr>
<td>Eirol</td>
<td>active</td>
<td>ERSUC</td>
<td>Coimbra</td>
<td>+351 239 851 910</td>
<td>www.ersuc.pt</td>
<td>2011</td>
<td>180,000</td>
<td>52,500</td>
<td>9,000</td>
<td></td>
</tr>
<tr>
<td>Évora</td>
<td>active</td>
<td>Gesamb</td>
<td>Évora</td>
<td>+351 266 748 123</td>
<td>www.gesamb.pt</td>
<td>2014</td>
<td>113,000</td>
<td>n.a.</td>
<td>5,329</td>
<td></td>
</tr>
<tr>
<td>Leiria</td>
<td>active</td>
<td>Valorlis</td>
<td>Leiria</td>
<td>+351 244 575540</td>
<td>www.valorlis.pt</td>
<td>2014</td>
<td>113,000</td>
<td>n.a.</td>
<td>5,329</td>
<td></td>
</tr>
</tbody>
</table>
Plants and projects in Spain

[...]

Algimia de Alfara
Status: active
Operator:TETMA - LUBASA GROUP
46023 Valencia
Tel.: +34 963 379 999
Start of operation: 2010
Capacity [tpy]: 120,000

Alhendín
Status: active
Operator:RESUR Granada
18014 Granada
Tel.: +34 958 804 315
www.resurgranada.es
Start of operation: 1999
Capacity [tpy]: 90,000

Alicante
Status: active
Operator:FCC
28061 Madrid
Tel.: +34 913 595 400
www.fcc.es
Start of operation: 2009
Capacity [tpy]: 195,000
Technical details: anaerobic digestion

Alosno
Status: active
Operator:CESPA - FERROVIAL GROUP
28002 Madrid
Tel.: +34 (0)915 86 25 00
www.ferrovial.com
Start of operation: 2006
Capacity [tpy]: 10,000

Ávila
Status: active
Operator:Urbaser
28703 Madrid
Tel.: +34 91 121 80 00
www.urbaser.es
Start of operation: 2003
Capacity [tpy]: 80,000
Technical details: anaerobic digestion

Barcelona 1
Status: active
Operator:UTE ECOPARC Barcelona, S.A
8040 Barcelona
Start of operation: 2008
Capacity [tpy]: 300,000
Technical details: anaerobic digestion

Barcelona 2
Status: active
Operator:EBESA
0 Barcelona
Start of operation: 2004
Capacity [tpy]: 240,000
Technical details: anaerobic digestion

Barcelona 3
Status: active
[...]

Price and product information

Contact:
j.eich@ecoprog.com
+49 (0) 221 788 03 88 17

You can order the market report here:
https://www.ecoprog.com/publikationen/abfallwirtschaft/mba/order-mba.htm

Price models:
- Single user copy: 3,400,- EUR plus VAT
- Company version: 6,800,- EUR plus VAT
- Corporate version: POA

Explanation:
- **Single user copy**: personal copy (personalised and password-protected PDF file, sent via e-mail)
- **Company version**: company-wide copy (legal entity), sent via email
- **Corporate version**: for different, legally connected companies (e.g. sister companies, subsidiaries abroad). Price depends on number of companies and employees

Additionally, you can order copies of the study on paper (hardcover book).
- Price: 150,- EUR plus VAT per book.